Advanced glycation end products regulate anabolic and catabolic activities via NLRP3‐inflammasome activation in human nucleus pulposus cells
نویسندگان
چکیده
Intervertebral disc degeneration is widely recognized as a cause of lower back pain, neurological dysfunction and other musculoskeletal disorders. The major inflammatory cytokine IL-1β is associated with intervertebral disc degeneration; however, the molecular mechanisms that drive IL-1β production in the intervertebral disc, especially in nucleus pulposus (NP) cells, are unknown. In some tissues, advanced glycation end products (AGEs), which accumulate in NP tissues and promote its degeneration, increase oxidative stress and IL-1β secretion, resulting in disorders, such as obesity, diabetes mellitus and ageing. It remains unclear whether AGEs exhibit similar effects in NP cells. In this study, we observed significant activation of the NLRP3 inflammasome in NP tissues obtained from patients with degenerative disc disease compared to that with idiopathic scoliosis according to results detected by Western blot and immunofluorescence. Using NP cells established from healthy tissues, our in vitro study revealed that AGEs induced an inflammatory response in NP cells and a degenerative phenotype in a NLRP3-inflammasome-dependent manner related to the receptor for AGEs (RAGE)/NF-κB pathway and mitochondrial damage induced by mitochondrial reactive oxygen species (mtROS) generation, mitochondrial permeability transition pore (mPTP) activation and calcium mobilization. Among these signals, both RAGE and mitochondrial damage primed NLRP3 and pro-IL-1β activation as upstream signals of NF-κB activity, whereas mitochondrial damage was critical for the assembly of inflammasome components. These results revealed that accumulation of AGEs in NP tissue may initiate inflammation-related degeneration of the intervertebral disc via activation of the NLRP3 inflammasome.
منابع مشابه
Hemin Induces the Activation of NLRP3 Inflammasome in N9 Microglial Cells
Background: Hemin is an important sterile component that induces a neuroinflammatory response after intracerebral hemorrhage, in which NLRP3 inflammasome activation has also proved to be involved. Although microglial activation acts as a key contributor in the neuroinflammatory response, the relationship between hemin and NLRP3 in microglia remains poorly understood. Objective: To investigate w...
متن کاملActivation of NLRP3 Inflammasome by Advanced Glycation End Products Promotes Pancreatic Islet Damage
Accumulation of advanced glycation end products (AGEs) contributes to ageing and age-related diseases, especially type 2 diabetes. The NLRP3 inflammasome, as a vital component of the innate immune system, is implicated in the pathogenesis of type 2 diabetes. However, the role of the NLRP3 inflammasome in AGE-induced pancreatic islet damage remains largely unclear. Results showed that administra...
متن کاملNlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy
Diabetic nephropathy is a growing health concern with characteristic sterile inflammation. As the underlying mechanisms of this inflammation remain poorly defined, specific therapies targeting sterile inflammation in diabetic nephropathy are lacking. Intriguingly, an association of diabetic nephropathy with inflammasome activation has recently been shown, but the pathophysiological relevance of...
متن کاملAdvanced glycation end products regulate interleukin-1β production in human placenta
Maternal obesity is a major risk factor for pregnancy complications, causing inflammatory cytokine release in the placenta, including interleukin-1β (IL-1β), IL-6, and IL-8. Pregnant women with obesity develop accelerated systemic and placental inflammation with elevated circulating advanced glycation end products (AGEs). IL-1β is a pivotal inflammatory cytokine associated with obesity and preg...
متن کاملP 106: Effects of Dimethyl Sulfoxide on NLRP3 Inflammasome and Alzheimer\'s Disease
Alzheimer's disease (AD), the most ordinary form of dementia and extracellular accumulation of Amyloid-β (Aβ) in senile plaques, is an important and a main event in the pathogenesis of AD. Deposition of Aβ Peptide initiates a spectrum of cellular responses that are interposed by the resident neuroimmune cells of the brain, the microglia. Recently, a novel inflammasome signaling&n...
متن کامل